
FrameMaker Template Design
and Enforcement

Author: Dan Emory

Copyright Notice

© 1999, Dan Emory, all rights reserved. Excerpts from this document may
be used, provided attribution to the author is given. Additional copies can
be obtained by email request to danemory@primenet.com

Synopsis

This paper describes methods I have developed for designing templates for
unstructured documents, and assuring that those documents conform to
their templates.

1 Overview

Formatting and tagging consistency is the cardinal prerequisite for preserving in perpetuity the capabil-
ities to globally update document formats/definitions, to accomplish document conversions, to support
collaborative authoring, and to reuse or repurpose information.

A template is the most effective tool for achieving this consistency, but the
act of creating a template and tossing it over the transom to a group of writ-
ers won’t do much good unless it is followed up by enforcement.

1.1 Why Do Authors Cheat?

Unfortunately, FrameMaker encourages authors of unstructured documents to use ad-hoc format over-
rides. In particular, the Format > Font, Format > Size, and Format > Style options, together with the
Quick Access Bar, the Context (shortcut) menu, and the Paragraph and Character Designer palettes,
constitute an open invitation for authors to override the template.
Here are some of the reasons why authors succumb to FrameMaker’s invitation to cheat:

1. Bad template design If the template itself is inadequate, authors are often forced to cheat in or-
der to properly present the information or to work efficiently. The most
common causes of bad template design are:

1. Failure to fully involve authors and quality assurance people in the
template development process.

2. Failure to adopt template enforcement rules in advance of its design.

3. Failure to perform a comprehensive Document Analysis

4. Failure to perform Content Modeling.

5. Failure to optimize the template for efficiency. Authors confronted
with tight deadlines must focus on efficiency. If the template forces
them to work in inefficient ways, they’ll cheat.
COPYRIGHT © 1999, DAN EMORY 1

OVERVIEW FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
2. Inadequate training in, and
documentation of, proper tem-
plate usage

A well-designed template for creating complex information almost always
requires formal training of authors in how to use the template efficiently
and properly, combined with a hypertexted on-line help document for the
template that guides authors in its proper usage. For obvious reasons, the
on-line help information should be provided in a hypertexted FrameMaker
view-only document that uses the template being documented.

3. Ineffective Management Management is responsible for communicating to authors the need for
template adherence, and the consequences of nonadherence. The most ef-
fective deterrent to cheating is a quality assurance function that nails au-
thors to the wall by detecting all ad-hoc overrides, and confronting them
with their transgressions. Another positive result of such quality assurance
activities is the identification of template design deficiencies that ought to
be corrected.

4. Author Behavior Lazy, incompetent, or defiant authors need to be “reeducated” or terminat-
ed. A rigorous quality assurance function (described above) is the most ef-
fective method for modifying behavior.

1.2 The Ultimate Solution: FrameMaker+SGML (FM+SGML)

FM+SGML enforces the format
and structure rules in struc-
tured documents

Although structured document authoring has many advantages, the ulti-
mate advantage is that formatting and structure rules are automatically en-
forced by FM+SGML, and cannot be successfully overridden. By
importing the document’s element definitions back into itself with “Re-
move Other Format Overrides” turned on, the EDD’s format rules are re-
applied, and all overrides, including ad-hoc formatting of character strings
within paragraphs, are removed. And, because authors are almost com-
pletely freed from formatting concerns, they can concentrate solely on
structure and content, using only the element catalog and the structure
view for guided editing. Inserting an element from the Element Catalog au-
tomatically inserts the correct document object, and, if the object contains
text, FM+SGML formats the text according to the EDD format rule that is
applicable to its structural context.

Improved Productivity If the Element Definition Document (EDD) is well-designed, the elimina-
tion of formatting concerns makes it possible to achieve a quantum leap in
authoring productivity, and a substantial reduction in the time that must be
devoted to quality assurance.

The same analysis and model-
ing techniques used to design
structured documents are ap-
plicable to unstructured ones
as well

This paper was created as a structured FM+SGML document, using an
EDD and templates of my own design. The Document Analysis and Con-
tent Modeling methods used in developing that EDD are adaptable to the
design of templates for unstructured documents.
The main purpose of this paper is to show that it is possible (although more
difficult and time-consuming) for unstructured documents to at least ap-
proach the level of template compliance that is so easily attained with
structured FM+SGML documents.
2 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TEMPLATE ENFORCEMENT RULES
2 Template Enforcement Rules

The rules you intend to enforce need to be drawn up prior to designing the template, because those
rules will define the scope of the template. That is, if authors will be prohibited from modifying or add-
ing anything in a particular catalog, then the scope of the template for that catalog must be all-encom-
passing. Most of the rules enumerated below are stated in their most restrictive form, which requires
that the template be all-encompassing with respect to most of the itemized aspects of template design.

Page Layouts Authors shall not modify, rename, delete, or add to the master page set de-
fined in the template, nor shall they make any modifications to those lay-
outs in the body pages that use them.

Reference Pages Authors shall not modify, rename, or delete any of the reference pages de-
fined in the template. They may, however, add new reference pages con-
taining document objects (e.g., tables) for the purpose of pasting those
objects into body pages.

Color Definitions and Color
Views

Authors shall not modify, rename, or delete the color definitions and views
defined in the template.

Conditional Text Tags Authors shall not modify, rename, delete, or add to the conditional text tag
definitions defined in the template, unless directed to do so, in which case
they shall be changed in all document files in a book file.

Paragraph and Character Cata-
logs

Authors shall not modify, rename, delete, or add to the tags defined in the
template’s paragraph and character catalogs. The restriction against mod-
ification also means that authors shall not modify the name or formatting
of any instance of such paragraph or character tags, with the following ex-
ceptions:

1. Character format tags may be applied to text strings or individual char-
acters within paragraph.

2. Column and page break overrides are allowed.

Table Catalog Authors shall not modify, rename, or delete the table format tags defined
in the template’s table catalog, or in the table ruling styles contained in the
Custom Ruling and Shading dialog. Authors may, however:

1. Add new table formats to the table format catalog.

2. Add new ruling styles to the Custom Ruling and Shading dialog.

3. Apply custom ruling and shading from the Custom Ruling and Shading
dialog.

4. Use the Row Format dialog to modify min/max height or start position
of a table row.

5. Modify any instance of a table format in the Table Designer, so long
as those modifications are only applied to the individual table in-
stance, and not to all instances of that format.

Cross-Reference Catalog Authors shall not modify, rename, delete, or add to the cross-reference for-
mats defined in the template.

Variable Definitions Authors shall not rename or delete any user-defined variable definitions in
the template, nor shall they add new user-defined variable definitions, nor
shall they modify the definition of any user-defined variable that has a
fixed value (e.g., a variable definition that produces the company name or
a special character). System variables that have a fixed format (e.g., dates,
COPYRIGHT © 1999, DAN EMORY 3

DOCUMENT ANALYSIS FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
filenames) in the template shall not be modified.

3 Document Analysis

This process is performed before templates are designed in order to determine the required scope of
each template. It is followed by the Content Modeling phase, where the results of this analysis are uti-
lized. Document Analysis is often an iterative process involving the steps described below.

Define the Environment This step includes:

1. Defining how the documents to be produced from the templates will
be created, updated, and distributed. Are they:

• Retrieved from a database?

• Printed to hardcopy?

• Distributed on a CD-ROM?

• Distributed for on-line viewing?

• Distributed for internal use, external use, or both?

• Created in a collaborative authoring environment?

• Periodically updated, and if so, how often?

• Likely to reuse some material from existing legacy documents?

• Likely to be repurposed during their lifetime?

• Likely to have portions of them reused in future documents?

2. Identifying what standards and policies must be followed, including:

• Format Standards and Style Guides

• Structure Standards

• Content Standards

• Information Security Policies

• Review and Editing Policies

• Revision and Updating Policies

• Storage and Distribution Policies

3. Identifying the types of authors and others who will use FrameMaker,
including any third-party tools/API’s that will be needed.

4. Identifying the document users (both internal and external), their infor-
mation needs, and the tools (e.g., viewing software, printers, CD-ROM
drives) that will be required to access the documents.

5. Identifying the fonts that are installed on all authoring platforms. The
fonts used in the template must be selected from those available on all
platforms.

6. Defining the page layouts, including page size, margins, number of
columns, and background objects (e.g., running header/footers and
graphics) for each document delivery method.

7. Selecting the font family and font sizes for various paragraph types.

8. Classifying and naming the document types.

9. Predicting document evolution.
4 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT CONTENT MODELING
Define the Generalized Struc-
ture of Each Document Type

In this step you must consider both hierarchy and sequence. Structure di-
agrams can be used to better visualize hierarchy and sequence, and to as-
sign relationships. It is also important at this stage to identify structural
components that are common to many different document types.

Identify and Describe the
Required Information Types

This step adds more granularity to the generalized structure of each docu-
ment type. Focus on information types which have hierarchical or multi-
object structure, as well as those which require formatting that is different
from ordinary body text. For example, this paragraph, and its title in the
sidehead are members of the information type named “ChunkLevel1”. Up
to four levels of titled chunking can be nested within this information type.

4 Content Modeling

If you were designing an EDD/DTD for structured documents, this is the phase where you would define
the elements and their structure rules. For unstructured documents, you do more or less the same thing,
but you do it for format tags (e.g., paragraph tags, character tags, cross-reference formats) that will be
created in the template’s catalogs.

Establish Template Naming
Conventions

The naming of things (e.g., paragraph, character, cross-reference, and ta-
ble tags, master pages, reference pages) in the template’s catalogs can
have a crucially important effect on authoring efficiency and proper tem-
plate usage. In complex documents, the required number of paragraph
tags can easily run well over 100. Catalogs list their tags alphabetically.
Grouping related paragraphs together alphabetically, and using descrip-
tive names, can greatly assist authors in finding and selecting the appropri-
ate paragraph tag. For example, all paragraph tags used for producing Lists
might have the prefix “List” in each name. Here is an example of how such
paragraph tags might be named so that they all appear together in the para-
graph catalog:

• ListBulletFirst

• ListBulletFirstIndent

• ListBulletLast

• ListBulletLastIndent

• ListBulletMiddle

• ListBulletMiddleIndent

• ListNumberFirst

• ListNumberFirstIndent

• ListNumberLast

• ListNumberLastIndent

• ListNumberMiddle

• ListNumberMiddleIndent
Where:

First indicates the first item in a list (it may have more space above,
and, in the case of a numbered list, it restarts the autonumbering at 1
or a).
Middle indicates that the item is between the first and last items.
Last indicates the last item in the list (it may have more space below)
COPYRIGHT © 1999, DAN EMORY 5

CONTENT MODELING FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
Indent indicates that the item is indented so it can be nested under an
unindented item in a numbered or bulleted list.

It is also important to establish a naming convention for tags that should
not be used by authors (e.g., character tags used exclusively in autonum-
bering specifications, variable definitions, or cross-reference formats).
Such tagnames could, for instance, be prefixed with a # symbol.

Content Modeling Example and
Syntax

In many cases, a sequence of paragraphs (and/or other object types) may
be required to create a particular information type. For example, consider
the Alert information type shown below:

! Warning: This is an example of a warning, consisting of an empty para-
graph named AlertIconWarning that has a reference frame below contain-
ing the icon in the sidehead column, followed by an empty spacer
paragraph (named AlertSpacer) in the normal text column (to align the first
text paragraph of the warning with the top of the icon), followed by the
warning text. The first text paragraph (named AlertTextWarning) has the
word Warning in red specified as a prefix in the Autonumbering proper-
ties.

If second and succeeding text paragraphs (like this one) are needed within
the warning, they require a paragraph tag named AlertText without the au-
tonumber prefix. Following the last text paragraph, paragraph tag Aler-
tEndLine is inserted that has a reference frame above containing a line to
separate the alert text from the text that follows it.

For the Alert information type (i.e., Notes, Cautions, and Warnings), the se-
quence of paragraph tags described above is stated in a content model, as
follows:

((AlertWarningIcon | AlertCautionIcon |AlertNoteIcon),
AlertSpacer, (AlertTextWarning | AlertTextCaution |
AlertTextNote), AlertText*, AlertEndLine)

Where:
Open and closing parentheses delimit the beginning and end of
connected groups that use a single connector type.
The vertical bar connector (|) indicates that any one of the para-
graph tags in the connected group can be inserted.
The comma connector (,) indicates that the paragraph tags in a
connected group must occur in the order given.
The asterisk occurrence indicator (*) indicates that the paragraph
tag or connected group to the left of it is optional, and can occur
more than once.

Note that all nine of the paragraph tags in the content model above
have names that begin with “Alert”, so that they will all be grouped
together alphabetically in the paragraph catalog.
Other connector and occurrence indicators (not used in the above
example) include:

The ampersand connector (&) indicates that the paragraph tags in
the connected group can occur in any order.
The plus sign occurrence indicator (+) indicates that the para-
graph tag or connected group to the left of it is required, and can
6 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT CONTENT MODELING
occur more than once.
The question mark occurrence indicator (?) indicates that the
paragraph tag or connected group to the left of it is optional, and
can occur only once.

The syntax described above is the same as that used to specify the content
models/structure rules for elements in DTDs and EDDs.
Content models expressed in the form described above also help to define
the formatting properties of paragraph tags. For example, the content mod-
el clearly shows which paragraph tags should be assigned Keep With Next
or Previous properties in the Paragraph Designer’s Pagination Properties.

Content Modeling Guidelines

Use DTD/EDD syntax for content
models

The syntax is described below the example on the preceding page.

Assign a unique “container” name
to each defined content model

This name would correspond to a container element in SGML that con-
tains no document objects or text, only other elements that contain such
objects. In unstructured documents, however, the container does not ac-
tually exist as a real object.

Tagnames should identify the type
of tag

The content models will be confusing if there is no way to identify the tag-
name types. One way is to include a prefix to the tagname that describes
its type (e.g. P- for paragraph tags, C- for character tags, T- for table tags,
V- for variable names, X- for cross-references, CT- for conditional text
tags). These prefixes should not, however, be included in the actual tem-
plate tagnames.

Any content model can contain in-
termixed tagnames and content
model container names

When a container name is included in a content model, it represents the
entire content model of that container. At the highest levels of structure,
the content models are likely to be made up entirely of container names.

A content model can specify exclu-
sions of certain tagnames in con-
tainers

Suppose, for example, that a content model for a particular information
type includes the Alert container whose content model is described in the
example on the preceding page. Suppose further that warnings are not al-
lowed in that information type. Consequently, the exclusions would spec-
ify the two tagnames (AlertIconWarning and AlertTextWarning) that are
unique to warnings.

Any document object type can be
included in content models

What this means is that content models should not be limited to just body
text paragraph tags. They might include anchored frames, marker types,
conditional text tags, character tags, footnotes and variable names. Also,
content models should be developed to specify the default paragraph tags
used in heading, body, and tooting rows of each table format.

Each tagname defined in a content
model represents a single immuta-
ble format.

The same tagname may appear in more than one content model, provided
its format is identical in all content models where it appears.

The content modeling documenta-
tion should include descriptions of
each container and tagname.

These descriptions should define the purpose of each container and tag-
name. In the case of tagnames, describe the intended use of the tag, and a
description of its formatting requirements.
COPYRIGHT © 1999, DAN EMORY 7

TEMPLATE DESIGN FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
5 Template Design

Good template design is an art form that requires the knowledge of experienced writers, power users of
FrameMaker with a strong understanding of typography and page layout, and inventive, analytical
minds. Complex templates designed without the participation of writers are foredoomed.

The description provided here
is intended to underscore the
complexities of template design

This paper was created from an EDD/template (the EDD itself has nearly
200 pages). The EDD includes 155 element definitions for creating differ-
ent information types and document objects. Those elements contain over
1000 format rules driven by attribute values and/or element structural con-
text. Over 200 multi-use format change lists in the EDD are put together in
numerous combinations to implement the formatting specified in those
format rules.
The template’s paragraph catalog contains over 100 format-rule-specified
paragraph tags, and many of those tags are deployed for multiple uses and
contexts that modify their formatting, as specified by format-rule-selected
format change lists.
An extreme case is the paragraph tag used in this paragraph. It is specified
in a number of different elements, and format rules in those elements can
produce well over 100 different formatting variations of it.
If the same template had been implemented for unstructured documents,
its paragraph catalog would have to contain well over 500 paragraph tags
to duplicate the EDD/template’s formatting capabilities.
Unlike an unstructured template, the EDD/template can accommodate a
number of different document types, including memos, glossaries, appen-
dixes, text insets, point page revision packages, standalone papers like this
one, and multi-file books made up of chapters, in which some of the chap-
ters span two or more files. Additionally, the EDD provides (in the form of
attributes) many user-specified formatting options, some of which can sig-
nificantly alter the appearance of an entire document.
It would require many different unstructured templates to replicate the full
range of the EDD’s formatting capabilities.

The Rulemaking, Document
Analysis, and Content Modeling
activities provide a blueprint for
designing the template

The adopted template enforcement rules, together with the results of the
Document Analysis phase, define the scope and purpose of the template.
The results of the Content Modeling phase establish tag naming conven-
tions, and identify the structures and tagnames that must be included in the
template’s catalogs.

Template design has many
masters

The rulemaking, document analysis, and content modeling phases impose
a panoply of often conflicting requirements and constraints on template
design. But the needs of authors must have equal importance. You must
prioritize these conflicting requirements before you can resolve the con-
flicts.

Design intelligently, and don’t
cut corners

All of the following lapses will come back to bite you:

• Things that might be needed which you decide to leave out.

• Kludgy, overcomplicated, or inefficient ways of doing things which,
on more careful analysis, could be made simpler and/or more effi-
cient.

• Implementing multi-column arrays with tabbed paragraphs rather
than tables.
8 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TEMPLATE DESIGN
• Using non-postscript fonts, or fonts that are unavailable on some au-
thoring platforms.

• Failing to take into account all of the document delivery modes, and
the effects of those different modes on formatting and layout.

• Failing to take into account document evolution, particularly the fu-
ture likelihood of conversions (e.g., to SGML or XML, or to some new
DTP that is superior to FrameMaker).

5.1 The First Things to Do

Step 1. Normally, you should begin by opening a new empty document of the cor-
rect page size and page layout.

Step 2. Remove from the new document’s catalogs all deletable formats/defini-
tions that are inapplicable.

Step 3. If the new template can utilize some formats/definitions from existing tem-
plate(s), selectively import those formats into the template.

Step 4. Delete from the new template those formats/definitions/layouts/reference
pages/reference frames imported in Step 3 from existing template(s) which
are inapplicable.

5.2 Page Layouts

If at all possible, limit the master pages to the default Left/Right pair plus a
First master page for the title page. This avoids the inevitable struggle with
non-default left/right master page pairs, which don’t get auto-updated by
FrameMaker.

How many columns? I firmly believe the best layout for most documents consists of a left-ali-
igned sidehead column plus a single normal text column, as is used in this
paper. The sidehead serves as the scanning column for section heads and
chunk titles to assist readers in rapidly finding the information they’re look-
ing for. The normal text column is narrow enough to make it speed-read-
able, and wide enough to accommodate most graphics and tables. Your
paragraph catalog can include two versions of the empty anchor para-
graph(s) used to anchor tables and anchored frames—one that is in the si-
dehead column and straddles the normal text column, and the other that
is in the normal text column. The former anchor paragraph(s) accommo-
date graphics and tables that are too wide to fit in the normal text column.
If landscaped tables or graphics are required, single-column landscaped
master pages with no sideheads are required.

Margins waste valuable screen
real estate

Margins for hardcopy printing waste valuable screen real estate when doc-
uments are viewed on-line. If a printed 81/2 x 11 document has 1-inch mar-
gins all the way around, 37% of the document window is occupied by
white-space margins.
The template for this paper specifies left/right margins of 0.25”, and top/
bottom margins of 0.131” (i.e., from the top page edge to the top of the
running header text frame, and from the bottom of the running footer text
frame to the bottom page edge). Consequently, the portion of the docu-
ment window containing white-space margins is reduced from 37% to
8%, permitting a higher zoom setting in the document window while still
being able to view the entire width of the document.
COPYRIGHT © 1999, DAN EMORY 9

TEMPLATE DESIGN FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
Also, the font size for ordinary body text is set to 12 points rather than the
normal size of 10 points. The larger font size and a higher zoom setting
makes it much easier for authors and editors to read, edit, and manipulate
text and document objects without having to zoom in to a setting that pre-
vents the entire width of the page from being displayed. This also makes
more screen real estate available outside the document window for dialog
boxes and palettes.
In effect, this approach creates what was called “oversized repro copy” in
that ancient era before WYSIWYG DTPs, scalable fonts, and high-resolu-
tion laser printers. To produce the printed documents, the oversized repro
was shot at a reduction to produce final-sized negatives for offset printing.
You get the same effect by printing this paper at 83% of full size, which
reduces the 12-point body text to 10 points, increases the left/right margins
to 0.93”, and increases the top/bottom margins to 1.04”.
This permits two versions of a document to coexist simultaneously in the
same file without the necessity of changing page layouts, font sizes, or
graphic and table sizes. In the on-line version (without the superfluous
margins) all text, graphics, and tables are 20% larger at a 100% zoom set-
ting than they would be if everything appeared in its final size.

5.3 Variables

Variables are under-used in most templates. Here are some of the ways
they should be used:

Fractions Commonly used fractions (e.g., 1/2 1/3 1/4 1/5 1/8 2/3 2/5 3/4) can be created by
user-defined variables. For example the variable for the fraction 1/2 has the
following fixed definition:

<FmNumerator>1<Default ¶ Font>/<FmDenominator>2

Where FmNumerator and FmDenominator are character formats that
specify superscript and subscript respectively, using a font size that is
2 points less than the size of ordinary body text.

Special characters and multi-
word phrases

Commonly used special characters (e.g., ©, ™, ®, °, ‡, ±, ≤, ≥, ≠, ≡, Ω) and
multi-word phrases can easily be defined by user-defined variables with
fixed definitions (the definition specifies the FmSymbol character format
for characters requiring the Symbol font, or the FmDingbat character for-
mat for characters using the Zapf Dingbat font).

Language Translations Words and phrases which are problematic for translation can be defined
in variables. Then, they only need to be translated once.

Enterprise-Specific Variables Enterprise-specific information (e.g., enterprise name, mailing address,
email address, web site URL) are created as user-defined variables.

Document-Set-Specific Vari-
ables

Document-set-specific variables (e.g. document title, copyright date, mod-
el number, product name, product nickname, product part number, re-
lease date, revision number) should be created as user-defined variables.
Note that some of this information often appears in running header/footers,
allowing the header/footer information to be globally updated.
Also, since all of the information in this category usually appears in the file
containing the book title page, the variables can be assigned their book-
wide values in that file, which is then used to update those same variables
in all the other files of the book. The update action is accomplished from
the book file by choosing File > Import > Formats, turning everything off
10 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TEMPLATE DESIGN
in the Import Formats dialog except Variable Definitions, and importing
the definitions into all files of the book.

5.4 Reference Pages

Reference pages should contain much more than just graphic lines used in
the Frame Above/Below properties of paragraphs. The reference pages
should also serve as a timesaver toolkit for authors and editors. Here are
some examples:

Making it easy for authors to
view, use, and update variables

I create a reference page named “Variables”, which contains a table of the
following form:

If the author wants to modify the current value of a variable (and is autho-
rized to do so), (s)he simply double-clicks on the current value in the table,
which opens the Variable dialog with the variable already selected. Au-
thors can also copy the variable from the Current Value column to the clip-
board, and then paste it into text.

Document date/time stamps It’s often important to know when a document was initially created, who
created it, when it was last modified, and who modified it. I create a refer-
ence page named “Date/Time Stamp” for this purpose, containing the fol-
lowing information that uses the Filename, Creation Date, and
Modification Date system variables:

Date/Time Stamps for File: Filename (Long) variable
Created By: creator’s name (typed in)
Creation Date/Time: Creation Date (Long) variable
Last Modification Date/Time: Modification Date (Long) variable)
Last Modified By: modifier’s name (typed in)

The Modification Date (Long) variable indicates the most recent date/time
that the document was saved.

Note: The only problem with putting the date/time stamp information on
a reference page is that you can’t print it. An alternative method is to create
a special master page (e.g., Date/TimeStamp) having only a background
text frame containing the date/time stamp information above.

To print the information, first save the document so as to update the mod-
ification date. Then, go to the last page of the document, choose Special >
Add Disconnected Pages, and select the Date/TimeStamp master page.
Now, you can print the page. After it’s printed, delete the added page. Fi-
nally, close the file without saving it.

Pre-formatted tables If your documents use table types with prescribed column headings/

Table 1. Variable Definitions

Variable Name Current Value Required? Modifiable?

The variable
name

The current val-
ue of the vari-
able

Yes or No (indi-
cates whether all
instances must
use the variable
rather than ordi-
nary text)

Yes or No (indi-
cates whether
the author is al-
lowed to modify
the variable defi-
nition)
COPYRIGHT © 1999, DAN EMORY 11

TEMPLATE DESIGN FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
widths, custom ruling and shading, and paragraph formats, a pre-format-
ted table for each type can be a real timesaver. Insert the table in a refer-
ence page text flow using the applicable table tag and the prescribed
number of columns, heading rows, and footing rows. Then, adjust the col-
umns to the prescribed width, and apply any required straddles and cus-
tom ruling and shading. Next, fill in the column names in the heading rows
using the prescribed paragraph tags, and apply the prescribed body row
paragraph tags to the the cells in the body rows. If the table has a title, type
in (at least partially) the table title, and insert the Table Continuation and/
or Table Sheet variable(s) at the end. If the table has a footing row, apply
the prescribed paragraph format to that row.
Authors can then copy any pre-formatted table from the reference pages,
paste it into the body text, and fill in the information required in the body
and footing rows.

Repetitively used graphics Includes icons (e.g., note, caution and warning icons), keycap labels, but-
tons, etc. In a reference page text flow, place each graphic in a sized an-
chored frame having the prescribed anchoring position and alignment.
Authors can copy any anchored frame (with its graphic) from the reference
page and paste it into the body text.

Pre-formatted boilerplate text Includes standardized notes, cautions and warnings, product liability dis-
claimers, and anything else that you want to standardize. The text can in-
clude variables, which are automatically updated to reflect the current
values in each document. Authors can copy any of this boilerplate from
the reference page and paste it into body text.

Specification flows for generat-
ed lists and indexes

These specifications (separate reference page for each flow, with the refer-
ence page names and their text flow names conforming to the FrameMaker
naming conventions for generated lists and indexes) make it possible to
generate properly formatted lists and indexes from any individual docu-
ment file, allowing authors to check for anomalies, misspellings in index
entries, etc. If the document files are later placed in a book file, the gener-
ated files in the book will inherit those specifications the first time they’re
generated from the book file.

By the Way…

When creating reference frames for objects on reference pages, be sure
that the Fill is set to None. This will assure that the empty area of the ref-
erence frame doesn’t conflict with background objects on master pages
(e.g., a shaded overlay to the text, or words such as “Draft” or “Final”).
12 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TEMPLATE DESIGN
5.5 Paragraph, Character, and Cross-Reference Catalogs

The Fundamental Axioms These axioms have a single purpose:
To assure that any or all paragraphs formats, character formats, and cross-
reference formats in any document created from the original template can
be changed in the original template (or a surrogate of that template), and
that those changes can then be globally propagated successfully into all af-
fected documents.

Axiom 1: All ad hoc format over-
rides (except page and column
breaks in paragraphs) are illegal.

This means that the catalogs must have a format for each variation required
for the proper presentation of the various information types in any antici-
pated context, else format overrides must be used.

Axiom 2: Authors cannot change
the format of any tag in the para-
graph, character, and cross-refer-
ence catalogs.

Such changes (which may be significant) will be removed whenever the
template is re-imported into the document with Remove Other Format
Overrides turned on.

Axiom 3: Authors cannot add new
tags/formats to the paragraph, char-
acter, and cross-reference catalogs.

Obviously, if such tags/formats were added, they could not be globally up-
dated from the template.

Axiom 4: All format overrides to
character strings within paragraphs
must be accomplished by the ap-
plication of the appropriate charac-
ter tag.

If this axiom is not followed, the resulting overrides cannot be globally
changed by updating character formats, nor can they be easily found and
removed.

Axiom 5: Character formats must
have all properties set to “As Is” ex-
cept for those properties that are
deliberately intended to override
the default font properties of all
paragraphs to which they can be
applied.

Although this axiom is self-evident, it is often overlooked. Frequently, for
example, the font family or font size is not set to “As Is”, even though there
is no intention to change those default properties of the paragraph. Subse-
quently, if the font family or font size of the paragraph format is globally
changed, the formatted string will have the wrong font or font size.

What these axioms mean to the
format design process

The template design must make enforcement of the axioms possible in a
real-world setting where tight deadlines and budgets, writer turnover, and
indifferent attitudes are normally occurring obstacles to enforcement. The
format design must forestall both the need and the temptation to violate the
axioms.
A poor format design that fails to anticipate all required formatting varia-
tions in all possible contexts, fails to satisfy design requirements, or im-
pedes authoring efficiency will assuredly result in rampant violation of
those axioms.

Design Pointers Here is a list of some things to consider.

• Use descriptive tagnames (see Establish Template Naming Conven-
tions in Section 4 for details).

• The value of the Next ¶ Tag in the Paragraph Designer Basic Proper-
ties panel as a method of improving authoring efficiency is often over-
looked. The Content Modeling phase shows instances where one
paragraph is always (or usually) followed by a particular paragraph tag
that is different. Specifying the next tag as part of such a paragraph for-
mat allows authors to just hit the ENTER key to insert the correct (or
COPYRIGHT © 1999, DAN EMORY 13

TEMPLATE DESIGN FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
most likely) tag for the next paragraph.

• Inserting repetitively used graphics and/or text by specifying a Frame
Above/Below in the paragraph format. I don’t mean just graphic lines.
You can also create reference frames on reference pages containing
graphics, text, tables, or a mixture of all of them. To insert these ob-
jects, you create special paragraph tags for that purpose.

• Design paragraph formats so they’ll work in both body text and table
cells. The Table Cell Properties panel of the Paragraph Designer lets
you set up the special properties of paragraphs when they are inserted
in table cells, without affecting their properties when they are inserted
in body text.

• Decide whether paragraphs should have fixed or variable line spac-
ing. If paragraphs can contain footnote numbers, fractions where the
numerator and denominator are superscripted, or other instances of
subscripts or superscripts, you’ll have to decide which line spacing
option (Fixed or Variable) is best. Even when you select Fixed line
spacing, the amount of spacing is adjusted to reflect any changes in
the font size. Remember that the amount of spacing depends not only
on the font size, but also on which option (Single, 1.5, or Double) you
select in the Line Spacing menu.

• Although there will be exceptions, you should avoid specifying a non-
zero value in both Space Above and Space Below in the Basic Prop-
erties panel of the Paragraph Designer. It is best to specify only a
Space Above. Obviously, there will be exceptions to this rule, but they
should be minimized so that the spacing will be the same in all con-
texts. If you do specify a Space Below, it should have a larger value
than the Space Above setting of the paragraph that usually follows it,
otherwise it will be overridden by the Space Above specified in the

By the Way…

Text insets that are created in individually named text flows of a
FrameMaker “fragment” file can serve the same purpose. They can be
imported By Reference or By Copy, and options are provided to pre-
serve the original formatting, or to reformat according to the target doc-
ument’s formatting. The advantage of importing text insets by reference
is that the documents containing them are automatically updated to re-
flect the latest version of the source (in the fragment file).
Note also that a fragment file can contain an entire “library” of such text
insets, each in a separate, descriptively named text flow.

By the Way…

You can create two versions of your templates—one for draft and one
for final, where the only difference in the two templates is the line spac-
ing setting (e.g., space-and-a-half for draft, single for final). To produce
the draft version of a document, simply import the paragraph formats
from the draft version of the template, with format overrides turned on.
Then, to produce the final version, simply repeat that process, using in-
stead the final version of the template.
14 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TEMPLATE DESIGN
following paragraph. This approach will minimize the number of cas-
es where multiple paragraph tags for the same basic paragraph type
must be created simply to accommodate variations in Space Above/
Below values for different contexts.

• Remember that you can apply character formats in combination to
the same string. If you have a character format named Bold, and an-
other named Italic. you can apply both to the same string, thus there
is no need to clutter up the character catalog with combinations such
as Bold-Italic, unless that particular combination has a specific pur-
pose.

• Character formats can be used for things other than changing the for-
mat of a string. That is, you can create character formats with descrip-
tive names that have all properties set to “As Is”. The purpose of such
tags is to identify something you may want to search for. For example,
suppose you create an all-As-Is format named PartNumber to tag all
part numbers appearing in the text. Now, you can search on that char-
acter tag and find all instances of part numbers in the text. Later, if you
decide to make all part numbers stand out from ordinary text, you can
globally update the
PartNumber character format to change one or more of its properties.

• You may also want to create character formats that are used exclu-
sively in variable definitions and cross-references to apply distinctive
colors to those objects so they will stand out from ordinary text. Before
you print to hardcopy, you can globally change these formats back to
black, then restore the colors when authoring resumes. Special char-
acter formats that are used exclusively in autonumbering specifica-
tions may also be required.
The names of such special character tags should include a distinctive
prefix (e.g., #) which identifies them as tags which are not to be used
by authors to format ordinary text strings within paragraphs. This will
assure that you can globally update those formats without affecting
anything other than the objects they were intended to format.

By the Way…

A special paragraph tag (let’s call it PageBreak) can be added to the
Paragraph Catalog to produce page or column breaks anywhere in a
document by setting the Space Below in that paragraph format to a value
large enough to always force the next paragraph to appear at the top of
the next column or page.
You simply insert PageBreak (an empty paragraph) as the last paragraph
in a page or text column. This eliminates the need to apply Page Break
or Column Break overrides to other paragraph formats in the Paragraph
catalog.
If you want to move a page or column break to another position, you
simply cut and paste the empty PageBreak paragraph.
COPYRIGHT © 1999, DAN EMORY 15

TEMPLATE DESIGN FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
5.6 Surrogate Templates

Surrogate templates provide a way to adapt the master template for use
with a particular document set. After importing formats from the master
template into the document set, the modified formats/definitions in the sur-
rogate template are imported into the same document set, thereby adding
to, and/or overriding, the formats in the master template. The result is that
the document set’s format catalogs and definitions are a composite of the
formats/definitions from the master template, and those formats which are
subsequently imported from the surrogate template.
In some cases, all of the formats/definitions in a particular catalog are im-
ported from the surrogate. In that event, the particular format/definition
category is turned off when importing the master template into a document
set, so that the catalog’s contents are completely determined by the subse-
quent importation of the surrogate template.

How are they created? A surrogate template is created by cloning and renaming the master tem-
plate. Then, format tags/definitions which are not applicable to the surro-
gate template’s purpose are deleted from the catalogs, leaving only those
format tags/definitions which need to be modified for a particular docu-
ment set. After making the required modifications, it may also be neces-
sary to add new formats/definitions needed for that particular document
set.

Typical ways they are utilized 1. Document-set-specific variables (see Document-Set-Specific Vari-
ables in Section 5.3), as well as the Current Page # system variable,
often deviate from the generic values for these variables in the master
template. The correct values for these variables can be defined in a
surrogate template.

2. New variable definitions applicable only to a particular document set
can be defined.

3. New conditional text tags applicable only to a particular document set
can be defined.

4. Changing a document’s page size, or other page layout parameters.

5. Adding new reference pages not included in the master template’s ref-
erence page set.

6. Changing the formats for some or all of the tags in the paragraph and
character catalogs.

7. Adding paragraph and character formats that are only associated with
a content model that is not implemented in the master template.

8. Modifying or adding to the color definitions, cross-reference formats,
or table formats.
16 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TESTING AND UPDATING THE TEMPLATES
6 Testing and Updating the Templates

I always create two versions of a template, one (the master template) is empty. The other is a sample
document which contains the latest version of the master, and has instantiations of all the content mod-
els that were defined during the Content Modeling phase. That means it should contain all document
object types, including page layouts, table formats, graphics, variables, and cross-reference formats, as
well as paragraph and character formats in all possible context variations. All required or proposed tem-
plate modifications are first tested in the sample document.

Additions and modifications are first refined in the sample document.
Then, the master template is updated by importing formats from the sam-
ple document into the master.

New Information Types Each new information type that is identified should first be defined by a
content model. The content model will identify any new formats and ob-
ject types that must be added, as well as existing ones that already appear
in other content models. An instantiation of the the new information type
is then created in the sample document. Any required new formats are cre-
ated and refined, and the impact, if any, of these changes on other content
models should be evaluated.

Revised Content Models Whenever an existing content model is changed, it must be changed in the
instantiation(s) of it in the sample document. The change is then analyzed
to determine whether any format modifications or additions are required.
If modifications to existing formats are made, the impact of these changes
on other content models that use the modified format tags must be evalu-
ated to determine whether they are compatible with all content models
where the modified format tags are used.
If the content model modification involves the deletion of a particular for-
mat tag, and that tag is not used in any other content model, it should be
deleted from the catalog in both the sample document and the master tem-
plate.

Suggested Changes to Existing
Formats

First, search the sample document for all instantiations of the format that
is to be changed, and determine whether the proposed change is compat-
ible with all instantiations of it. If the suggested change is valid, but it is
incompatible with some instantiations, the change may require the addi-
tion of new formats.

7 Producing Paragraph Listings

MIFMuncher is a shareware product that can produce the complete details
of each paragraph format in the paragraph catalog. First, you save the tem-
plate in MIF format. Then, run MIFMuncher on the MIF file to produce an
ASCII file containing the format details of each paragraph. You can then
open the ASCII file in FrameMaker.
You can also use MIFMuncher to produce a simple list of all paragraph
tags in the catalog, without their formatting details. By generating such a
list for the template, you can compare it to the corresponding list produced
for each document created from the template. This allows you to identify
illegally added paragraph tags in documents created from the template.
COPYRIGHT © 1999, DAN EMORY 17

SAFEGUARDING TEMPLATES FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
8 Safeguarding Templates

The master copies of templates, as well as their companion sample document version(s) must be pro-
tected from font substitution and other random acts of violence committed by users, the software, and
the computer system.

Back up your work Each time you modify a template or its companion sample document,
back it up to a Zip disk or similar media where it is protected from hard
disk crashes.

Protect the Template from Cor-
ruption by the Sample Docu-
ment

Each time you open a sample document, the first thing you must do is to
import into it the formats from its companion master template with Re-
move Other Format Overrides turned on. This assures that the sample doc-
ument is initially in sync with the master before any changes are made in
the sample document. Each time you make a modification to the sample
document, and before you update the master from the sample document,
be sure to import the sample document’s formats back into itself (i.e., se-
lect Current as the document to import the formats from) with Remove
Other Format Overrides turned on.

Protect templates against font
substitution

Font substitution is the equivalent of the AIDS virus. There are two carriers:

1. Win 9x and Win NT platforms: If your template uses Postscript fonts,
and a non-postscript printer is selected before or while the master tem-
plate or the companion sample document is open, abominable True-
Type fonts will be substituted.

2. Any platform that is missing fonts used in the template: Opening the
template or the companion sample document on such a platform will
cause font substitution for the missing fonts to occur.

The safest approach is never to allow either of these events to happen. Al-
ways check the Console Log immediately after opening a template or a
sample document to make sure there were no font substitutions. If font
substitutions occurred, immediately close the file without saving it. In
FrameMaker version 5.5.x and above, the Ghost fonts feature can restore
the original fonts when the cause of the font substitution is eliminated.
This, however, requires that you always turn on Remember Missing Font
Names in the Preferences dialog before opening the template or its com-
panion sample document. Note, however, that turning on Remember
Missing Font Names after opening the document will preserve the substi-
tuted font names rather than the original font names.

Prevent write access by unau-
thorized persons

Templates and their companion sample documents must reside in directo-
ries where write access by unauthorized persons is denied.
18 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TEMPLATE ENFORCEMENT
9 Template Enforcement

The objectives of a template are to achieve consistent tagging and formatting. Template enforcement
involves the necessary quality assurance steps that must be performed on each completed document
instance to assure that those objectives are achieved.

9.1 Style Guide

Any template worth designing deserves a style guide. The best approach is
to utilize the sample document (see Section 6, Testing and Updating the
Templates) as a starting point. Add explanatory text plus content models
for each information type. Finally, add index markers, and generate a hy-
pertexted index, plus a hypertexted Table of Contents. Make the style
guide available as a view only on-line document to all authors and quality
assurance personnel.

9.2 Tools of the Trade

The following tools are useful for template enforcement:

MIFMuncher See Section 7, Producing Paragraph Listings.

Create and Apply Formats

How is it invoked? With input focus in the document being analyzed, choose File > Utilities
> Create and Apply Formats.

What does it do? It scans a document, and finds all occurrences of:

• Format overrides to paragraphs. Each such paragraph is assigned a
new tag, which is added to the paragraph catalog. For example, if
there are three instances where properties of the Body paragraph for-
mat are overridden, three new paragraph tags, Body1, Body2, and
Body3 are added to the paragraph catalog

• Untagged formatted strings within paragraphs. Each such string is as-
signed a new tag, which is added to the character catalog. For exam-
ple, if three strings in different paragraphs have an ad-hoc Bold
property that overrides the default non-bold property of the paragraph
format, all three strings would be tagged with a new character format
named CharFmt. Then, if another such string is found that has an Italic
property that overrides the default non-italic property of the paragraph
format, it would be tagged with a new character format named
CharFmt1. Both of these new tags would be added to the character
catalog.

What are its limitations 1. It finds paragraphs where the only override is that Page Break or Col-
umn Break has been turned on, and assigns them new paragraph tags.
Since page and column breaks are not normally treated as format
overrides, these new tags are usually superfluous.

2. It cannot be used on an entire book. Instead, it must be performed on
each file in the book.

What is its purpose in template en-
forcement?

1. It allows the scope of the override problem to be determined.

2. It prevents overrides from being wiped out if the template’s paragraph
and character formats are subsequently imported into the document
with Remove Other Format Overrides turned on.
COPYRIGHT © 1999, DAN EMORY 19

TEMPLATE ENFORCEMENT FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
3. It provides the means (using a hypertexted generated list of para-
graphs) to locate each instance of each new tag that was created, so
that the format overrides in each instance can be evaluated before de-
termining of how they are to be fixed.

Generate a Hypertexted List of
Paragraphs

How is it invoked? With input focus in the document whose paragraphs are to be listed,
Choose File > Generate/Book. In the Generate/Book dialog, choose List of
Paragraphs from the List menu, and click the Generate button. Then, in the
Set Up List of Paragraphs dialog, move the paragraph tags of interest into
the Include Paragraphs listbox, turn on Create Hypertext Links, and click
the Generate button. The list of paragraphs will then be generated and dis-
played.

What does it do? The text of each paragraph whose format tagname matches the tagname of
a paragraph listed in the Include Paragraphs listbox is produced. Each
paragraph has a format tag named tagnameLOP, where tagname is the
name of a tag that was included in the Include Paragraphs listbox. Each
paragraph in the generated list has a hypertext marker. After the generated
list is made View Only, clicking in a paragraph produces a hypertext jump
to the actual paragraph in the document.

What is its purpose in template en-
forcement?

It provides a way to list, find, evaluate and apply the correct paragraph tag
to, all instantiations of paragraphs whose tagnames are not included in the
template (i.e., paragraph tags illegally added to the paragraph catalog, plus
paragraph tags for format overrides created by executing the Create and
Apply Formats action).

Generate a Hypertexted List of
Fonts

How is it invoked? With input focus in the document whose fonts are to be listed, Choose File
> Generate/Book. In the Generate/Book dialog, choose List of References
from the List menu, and click the Generate button. Then, in the Set Up List
of References dialog, move Fonts into the Include References listbox, turn
on Create Hypertext Links, and click the Generate button. The list of fonts
will then be generated and displayed.

What does it do? Each font occurring in the document is listed, and has a hypertext marker.
After the generated list is made View Only, clicking in a font description
produces a hypertext jump to the instance of the font in the document.

What is its purpose in template en-
forcement?

It provides a way to list, find, evaluate and fix all instantiations of fonts that
are not included in the template.

Find a Character Format

How is it invoked? With input focus in the document in which character tags are being exam-
ined, choose Edit > Find/Change. In the Find/Change dialog, choose Char-
acter Format from the Find menu, and type in the name of the character
format to be found in the slot to the right of the Find menu.

What does it do? It finds all instantiations of the specified character format.

What is its purpose in template en-
forcement?

It provides a way to find, evaluate and fix all instantiations of character for-
mats whose tagnames are not included in the template (i.e., character tags
illegally added to the character catalog, plus character tags for format
20 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TEMPLATE ENFORCEMENT
overrides created by executing the Create and Apply Formats action).

Find a Cross-Reference Format

How is it invoked? With input focus in the document in which cross-reference formats are be-
ing examined, choose Edit > Find/Change. In the Find/Change dialog,
choose Cross-Reference of Format from the Find menu, and type in the
name of the cross-reference format to be found in the slot to the right of
the Find menu.

What does it do? It finds all instantiations of the specified cross-reference format.

What is its purpose in template en-
forcement?

It provides a way to find, evaluate and apply the correct cross-reference
format to, all instantiations of cross-reference formats whose tagnames are
not included in the template (i.e., cross-reference formats illegally added
to the cross-reference catalog).

Find a Variable

How is it invoked? With input focus in the document in which definitions are being exam-
ined, choose Edit > Find/Change. In the Find/Change dialog, choose Vari-
able of Name from the Find menu, and type in the name of the variable to
be found in the slot to the right of the Find menu.

What does it do? It finds all instantiations of the specified variable.

What is its purpose in template en-
forcement?

It provides a way to find, evaluate and fix all instantiations of variable def-
initions which are not included in the template (i.e., variable definitions
that were illegally added to the document).

Find a Conditional Text Tag

How is it invoked? With input focus in the document in which conditional text tags are being
examined, choose Edit > Find/Change. In the Find/Change dialog, choose
Conditional Text… to open the Find Conditional Text dialog. In this dia-
log, turn on Conditional, move the conditional text tags of interest into the
In listbox, and click the SET button.

What does it do? It finds all instantiations of the specified conditional text tags.

What is its purpose in template en-
forcement?

It provides a way to find and evaluate all instantiations of conditional text
tags which are not included in the template (i.e., conditional text tags that
were illegally added to the document).

Find Unresolved Cross-Refer-
ences

How is it invoked? With input focus in the document in which unresolved cross-references
are being examined, choose Edit > Find/Change. In the Find/Change dia-
log, choose Unresolved Cross Reference from the Find menu.

What is its purpose in template en-
forcement?

It provides a way to find and fix unresolved cross-references.
COPYRIGHT © 1999, DAN EMORY 21

TEMPLATE ENFORCEMENT FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
Import Formats

How is it invoked? With input focus in the target document, choose File > Import Formats. In
the Import Formats dialog, choose the source document you want to im-
port the formats from (it must already be open). Next, turn on the formats
you want to import. The format selections include:

1. Paragraph formats

2. Character formats

3. Page Layouts (i.e., master pages)

4. Table Formats

5. Color Definitions

6. Reference Pages

7. Variable Definitions

8. Cross-Reference Formats

9. Conditional Text Settings

10. Math Definitions
Finally, select whether you want to remove format overrides.

What does it do? The selected format types from the source document update the corre-
spondingly named formats in the target document, and any new tags not
already present in the target document are added. If Remove Other Format
Overrides is turned on and Remove Manual Page Breaks is turned off, for-
mat overrides (except page and column breaks) in all instantiations of the
selected format types within the target document are removed.

What are its limitations? If there are formats in the target document whose tagnames do not match
any of the tagnames in the source document, those formats and all their
instantiations are unaffected. Also, if Table Formats are imported with Re-
move Other Format Overrides turned on, legitimate overrides in instantia-
tions of tables created from those formats will be removed.

What is its purpose in template en-
forcement?

To bring the target document’s formats into conformance with selected
formats from the template.
22 COPYRIGHT © 1999, DAN EMORY

FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT TEMPLATE ENFORCEMENT
9.3 Enforcement Procedure

This procedure can be used to bring any document into conformance with
the template from which it was created. The methodology assures that all
format overrides can be properly evaluated before they are removed.

Note: In steps 1 and 2 below, you can ignore Table Formats if authors are
allowed to create new table formats (see Table Catalog in Section 2).

Step 1. Make a list of all formats/definitions/page layouts in each of the categories
described under Import Formats in Section 9.2 for the master template,
plus any additional ones in applicable surrogate templates. In the case of
paragraph formats, you can use MIFMuncher (see Section 7, Producing
Paragraph Listings to produce the list.

Note: Deletion of tags/definitions from the catalogs in steps 2 and 3 below
does not affect any instantiations of those tags/definitions (i.e., they will
still retain the tag, even though the tag/definition has been deleted from the
catalog).

Step 2. Open the document whose conformance to the template is to be enforced,
and make a list of all formats/definitions/page layouts as in step 1, and
compare the two lists. Make a list of all tags/definitions/page layouts that
have been illegally added to the document, then delete those tags (except
for variable definitions) from the document’s catalogs/definitions/page lay-
outs.

Step 3. Perform the Create and Apply Formats action (see Create and Apply For-
mats in Section 9.2), and identify and list all new paragraph and character
formats that were added by this action. Then, after making the list, delete
all of those new paragraph and character tags from the catalogs.

Note: The actions performed in Steps 4 and 5 below will not override para-
graph and character formats identified in Steps 2 and 3, because formats
for these tags are not included in the template(s).

Step 4. Open the master template, and perform the Import Formats action (see Im-
port Formats in Section 9.2) to import all formats (except for Table Formats
and catalogs that are completely defined in the surrogate template) from
the master template, with Remove Other Format Overrides turned on.

Step 5. If a surrogate template is also being used (see Section 5.6, Surrogate Tem-
plates), open it and perform the Import Formats action again to import all
applicable formats except Table Formats from the surrogate template with
Remove Other Format Overrides turned on.

Note: Be sure that Remove Other Format Overrides is turned off in Steps
6 and 7 below, otherwise, customizations of table instances (e.g., ruling
and shading, changes in cell margins) will be wiped out.

Note: Do not perform Step 6 below if all table formats are being imported
from the surrogate template.
COPYRIGHT © 1999, DAN EMORY 23

TEMPLATE ENFORCEMENT FRAMEMAKER TEMPLATE DESIGN AND ENFORCEMENT
Step 6. Perform the Import Formats action again with only Table Formats selected
to import the Table Formats from the master template with Remove Other
Format Overrides turned off.

Step 7. If a surrogate template is also being used, and it contains Table Formats,
perform the Import Formats action again with only Table Formats selected
to import the Table Formats from the surrogate template with Remove Oth-
er Format Overrides turned off. After this step is completed, all templates
can be closed.

Note: At the completion of step 7, the document’s catalogs will contain
only the formats/definitions/page layouts imported from the templates, and
all instantiations of those formats will conform to the formatting specified
in the templates. However, instantiations of deviant paragraph, character
and cross-reference formats, as well as deviant variable definitions and
conditional text tags (all of which were identified in steps 2 and 3), are still
present, and are still non-conforming.

Step 8. You must now use the lists (produced in Steps 2 and 3 above) of deviant
paragraph, character and cross-reference formats, deviant conditional text
tags, and deviant variable definitions to find and fix them. The methods de-
scribed in Section 9.2 that are used to find them include:

1. Generate a Hypertexted List of Paragraphs

2. Find a Character Format

3. Find a Variable

4. Find a Cross-Reference Format

5. Find a Conditional Text Tag

Step 9. Update the cross-references, and fix unresolved ones. Choose
Edit > Update References, turn on All Cross References in the Update Ref-
erences dialog, and click the Update button. If unresolved cross-references
are found use Find Unresolved Cross-References in Section 9.2 to find and
fix them.

Step 10. Check for invalid fonts, using the method described under Generate a Hy-
pertexted List of Fonts in Section 9.2, and change any instances of invalid
fonts to the correct ones.

Step 11. The document is now fully conformant with the template(s). In the process
of doing that, you probably found that some paragraph and character for-
mat overrides were the result of applying the wrong tag. Instead of chang-
ing the tag to the appropriate one, the author applied format overrides to
the paragraph or character format. There may, however, still be cases
where the inappropriate tag was applied, without any format overrides be-
ing used. You should now scan through the document for improper tag us-
age, and apply the correct tag to anything that’s found.
24 COPYRIGHT © 1999, DAN EMORY

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

Dan Emory

10044 Adams Ave. #208
Huntington Beach, CA 92646

Voice/Fax: 949-722-8971
Email: danemory@primenet.com

Dan Emory & Associates
Information Design Specialists

	1 Overview
	1.1 Why Do Authors Cheat?
	1.2 The Ultimate Solution: FrameMaker+SGML (FM+SGM...

	2 Template Enforcement Rules
	3 Document Analysis
	4 Content Modeling
	5 Template Design
	5.1 The First Things to Do
	5.2 Page Layouts
	5.3 Variables
	5.4 Reference Pages
	5.5 Paragraph, Character, and Cross-Reference Cata...
	5.6 Surrogate Templates

	6 Testing and Updating the Templates
	7 Producing Paragraph Listings
	8 Safeguarding Templates
	9 Template Enforcement
	9.1 Style Guide
	9.2 Tools of the Trade
	9.3 Enforcement Procedure

