
InFrame Magazine - Features - FrameScript: Loops and Lists Page 1 of 4

http://www.inframe-mag.com/pages/002-f500.html 09/21/2000

FrameScript: Loops and Lists
by Rick Quatro

Last time, we introduced a simple FrameScript loop to process all of the
paragraph formats in a document. In this lesson, we will introduce a
variation of the loop, and the important concept of "linked lists" of
FrameMaker objects.

The general syntax for the Loop ForEach command is

Loop ForEach(Object) In(Object) LoopVar(Variable)
...(perform tasks here)...
EndLoop

There are times, however, when this kind of loop will not work. For
instance, you cannot use Loop ForEach to loop through all of the graphics
in the active document; see page 84 in the Scriptwriter's Reference for a
list of valid parameters. In addition, some commands will not work inside
the loop. Here is an example. Open a blank, portrait document, choose
FrameScript > Script Window, and type the following in the Edit Script
Window:

Loop ForEach(PgfFmt) In(ActiveDoc) LoopVar(vPgfFmt)
 Delete Object(vPgfFmt);
EndLoop

Open the document's Paragraph Catalog, and click the Run button. We
would expect the script to delete all of the paragraph formats in the
document, but it doesn't. Each time you click Run, the script deletes one
format and stops. To understand why this happens, let's introduce a
different kind of loop and examine how a loops work in general.

First, here is a loop from the last lesson that we know works.

Loop ForEach(PgfFmt) In(ActiveDoc) LoopVar(vPgfFmt)
 Display vPgfFmt.Name;
EndLoop

Now, we will introduce another loop that performs the same task.

Set vPgfFmt = ActiveDoc.FirstPgfFmtInDoc;
Loop While(vPgfFmt)
 Display vPgfFmt.Name;
 Set vPgfFmt = vPgfFmt.NextPgfFmtInDoc;
EndLoop

InFrame Magazine - Features - FrameScript: Loops and Lists Page 2 of 4

http://www.inframe-mag.com/pages/002-f500.html 09/21/2000

Here is a summary of what the second loop does.

1. Sets the vPgfFmt variable equal to the document's first paragraph
format.

2. Begins a loop that will continue as long as vPgfFmt is "true." In
other words, the loop will continue as long as vPgfFmt "exists." If
there are no paragraph formats in the document, the script will never
enter the loop, because vPgfFmt would be "false" (does not exist).

3. Once inside the loop, the script will display the current paragraph
format's name.

4. The second line inside the loop is the key. The value of vPgfFmt is
changed to the next paragraph format in the document. If it exists,
the script stays in the loop, if not, the script exits the loop.

While the syntax of the loops is different, it is important to understand that
the two loops operate the same. The first loop is simply a shorthand
version of the second.

The basic purpose of a loop is to perform a task for each member of a list
of objects. You go from one member of the list to the next, performing the
task on each member, until you reach the bottom of the list. FrameMaker
maintains separate "linked lists" of each object type, such as paragraph
formats, paragraphs, graphics, and tables. Each object represents a
member of its list. Understanding linked lists is the key to writing scripts!
This may seem like an overstatement, but you need to be able to access and
traverse these lists (move from member to member) in order to manipulate
them with scripts.

To illustrate linked lists, go to page 145 of the Scriptwriter's Reference
where Document Properties are listed. This list contains Document
properties, but it also contains links to other lists of properties. To access
the other lists, the Document object gives us a "link" to the first member of
each list. In our script, we use dot notation to help us reach the first
member in the list of paragraph formats.

Set vPgfFmt = ActiveDoc.FirstPgfFmtInDoc;

What if we want to reach the second paragraph format in the document?
Can we use Set vPgfFmt = ActiveDoc.SecondPgfFmtInDoc; or Set
vPgfFmt = ActiveDoc.NextPgfFmtInDoc;? Neither of these will work,
because the Document object only gives us access to the first member of
the list. The Document object says, if effect, "I'll get you to the first
member of the list, but after that, you are on your own."

The responsibility of moving from member-to-member in a list falls on
each of the list members. Each PgfFmt object has a NextPgfFmtInDoc
property. Each Pgf object has a PrevPgfInDoc property and a
NextPgfInDoc property. The Document object "passes the baton" to the
first member of the list, and the first member passes it the next, etc. This
what our script is doing inside the loop.

Set vPgfFmt = vPgfFmt.NextPgfFmtInDoc;

When the script gets to the last member of the list, its NextPgfFmtInDoc
property returns zero because the NextPgfFmtInDoc object does not exist.
This causes the vPgfFmt variable to be "false" and the loop exits.

InFrame Magazine - Features - FrameScript: Loops and Lists Page 3 of 4

http://www.inframe-mag.com/pages/002-f500.html 09/21/2000

Our first loop uses the same method to access the document's paragraph
formats, but the "baton passing" is hidden. Let's use the second form of the
loop (and our knowledge of linked lists) to solve the problem of the script
stopping before it deletes all the formats. Here is the revised form of the
script to delete all of the paragraph formats in the document.

Set vPgfFmt = ActiveDoc.FirstPgfFmtInDoc;
Loop While(vPgfFmt)
 Delete Object(vPgfFmt);
 Set vPgfFmt = vPgfFmt.NextPgfFmtInDoc;
EndLoop

Copy this script into your Script Edit Window and click Run. Like before,
it only deletes one format, and this time, it gives an error. Can you figure
out why it only deletes one format? If we use the runner with the baton
metaphor, the answer is simple. The line

Delete Object(vPgfFmt);

deletes the vPgfFmt object before it has a chance to "pass the baton" to the
next paragraph format in the document. To put it bluntly, we killed the
runner before he could pass the baton! The next line in the script gives an
error because the vPgfFmt object no longer exists.

Here is the solution:

Set vPgfFmt = ActiveDoc.FirstPgfFmtInDoc;
Loop While(vPgfFmt)
 Set vPgfFmtToDelete = vPgfFmt;
 Set vPgfFmt = vPgfFmt.NextPgfFmtInDoc;
 Delete Object(vPgfFmtToDelete);
EndLoop

What we are doing is setting another variable to the current paragraph
format with the line

Set vPgfFmtToDelete = vPgfFmt;

The next line passes the baton but now we have a variable,
vPgfFmtToDelete, that remembers the previous runner that had the baton.
It is now safe to delete the previous paragraph format, because vPgfFmt
already represents the next one in the linked list.

If you don't quite understand this lesson yet, don't be too concerned. Keep
working with the mechanics of the scripts, and the concepts will become
clearer. As a reward for your endurance, I will finish (and, hopefully,
reinforce) the lesson with a very useful script. This script will delete all of
the paragraph formats from the catalog that are not in use in the document.
This is a good way to clean up a document before importing formats from
a template. The script will also introduce another loop and some new
concepts, such as error checking and conditional statements.

Before beginning the script, it is best to figure out how we are going to
attack the problem. At this point, we want to determine the "logic" of the
script without worrying about the syntax. I like to verbalize the overall
solution in plain English, and then make a list of the individual tasks. Here
is the list form of my solution.

1. Make a list of all of the paragraph formats in the catalog.
2. For each paragraph in document, determine what paragraph format it

InFrame Magazine - Features - FrameScript: Loops and Lists Page 4 of 4

http://www.inframe-mag.com/pages/002-f500.html 09/21/2000

2. For each paragraph in document, determine what paragraph format it
uses.

3. If the paragraph's format is in the list, remove it from the list.
4. After testing all of the paragraphs, see if there are any paragraph

formats left in the list.
5. If there are, delete them from the document's catalog.

Below is the complete listing of the script. As an exercise, try to follow the
script and figure out which lines of code correspond with the list items
above. Try to add comments to the script. Can you think of any useful
features to add? In the next lesson, we will analyze the script line-by-line.

// Delete all unused paragraph formats in the document.
If ActiveDoc = 0
 MsgBox `There is no active document.';
 LeaveSub;
Else
 Set vCurrentDoc = ActiveDoc;
EndIf

New StringList NewVar(vPgfFormatsInCatalog);

Set vPgfFmt = vCurrentDoc.FirstPgfFmtInDoc;
Loop While(vPgfFmt)
 Add Member(vPgfFmt.Name) To(vPgfFormatsInCatalog);
 Set vPgfFmt = vPgfFmt.NextPgfFmtInDoc;
EndLoop

Loop ForEach(Pgf) In(vCurrentDoc) LoopVar(vPgf);
 Find Member(vPgf.Name) InList(vPgfFormatsInCatalog)
 ReturnStatus(vFound);
 If vFound = 1
 Remove Member(vPgf.Name) From(vPgfFormatsInCatalog);
 EndIf
EndLoop

If vPgfFormatsInCatalog.Count > 0
 Loop While(vCounter <= vPgfFormatsInCatalog.Count)
 LoopVar(vCounter) Init(1) Incr(1)
 Get Member Number(vCounter) From(vPgfFormatsInCatalog)
 NewVar(vPgfFormat);
 Get Object Type(PgfFmt) Name(vPgfFormat) NewVar(vPgfFmt);
 Delete Object(vPgfFmt);
 EndLoop
EndIf

Features | Tips | Reviews | Case Studies | Adobe Speaks

